MATHS CLASS XII (Relations and Functions) Continuation.....

General direction for the students:-Whatever be the notes provided, everything must be copied in the Maths Copy and then do the Home work in the same Copy.

EXERCISE 1.3

Q7. Given $f: R \to R$ defined as $f(x) = x^4$

We know -1, $1 \in R$ (domain)

Now
$$f(-1) = 1$$
 , $f(1) = 1$

- \Rightarrow -1 and 1 are having same image 1.
- \Rightarrow not one one.

We know $-5 \in R$ (*Codomain*)

$$\Rightarrow$$
 -5 = x^4

Which is not possible for real values because even power leads to positive.

⇒ -5 is not having pre image. Hence it is not onto.

Q 8. Given $A = R - \{2\}$ and $B = R - \{1\}$, $f: A \to B$ defined by $f(x) = \frac{x-1}{x-2}$

For one one $f(x_1) = f(x_2)$

$$\Rightarrow \frac{x_1 - 1}{x_1 - 2} = \frac{x_2 - 1}{x_2 - 2}$$

$$\Rightarrow x_1 x_2 - 2x_1 - x_2 + 2 = x_1 x_2 - x_1 - 2x_2 + 2$$

$$\Rightarrow x_2 - x_1 = 0$$

$$\Rightarrow x_2 = x_1 \Rightarrow f$$
 is one one.

For onto

Codomain, $B = R - \{1\}$

$$y = \frac{x-1}{x-2}$$

$$\Rightarrow xy - 2y = x - 1 \qquad \Rightarrow x(y - 1) = 2y - 1 \qquad \Rightarrow x = \frac{2y - 1}{y - 1}$$

$$\Rightarrow y \neq 1 \Rightarrow \text{Range} = R - \{1\} = \text{codomain}$$

 \Rightarrow f is onto \Rightarrow f is bijective.

Q 12. Given $f: N \to N$ defined f(n) = n + 1, if n is odd. f(n) = n - 1, if n is even.

For one one

Case 1.

Let x, $y \in N$ are odd

$$f(x) = f(y)$$

$$\Rightarrow x + 1 = y + 1 \Rightarrow x = y$$

 \Rightarrow f is one one when n is odd.

Similarly, f is one one when n is even.

Case 2.

Let *x* is odd and *y* is even

$$\Rightarrow f(x) = f(y)$$

 $\Rightarrow x = y \Rightarrow \text{odd} = \text{even}$, which is not possible.

$$\Rightarrow f(x) \neq f(y)$$

Similarly, Let x is even and y is odd $\Rightarrow f(x) \neq f(y)$

On combining all cases f is one one.

For onto

Codomain = N

Let
$$x$$
 is odd $\Rightarrow x = n + 1$ $\Rightarrow n = x - 1$ is even $\in N$

Let y is even
$$\Rightarrow y = n - 1$$
 $\Rightarrow n = y + 1$ is odd $\in N$

⇒ codomain= Range

Hence it is onto.

Q 24. Given n(A)=3 , n(B)=4

Number of functions $=4^3 = 64$.

Q 28. Given n(A) = 3, n(B) = 3

Number of one one onto functions= 3! = 6.

Home work: Left over questions from the exercise.